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Abstract

The primary feature of cognitive radios for wireless communication systems is the
capability to optimize the relevant communication parameters given a dynamic wire-
less channel environment. Recently, several research groups have presented promis-
ing preliminary results on the benefit of extending the cognitive process at the
system level, capable of perceiving current network conditions and then acting ac-
cording to end-to-end goals. System optimization however implies some challenging
tasks: 1) Current network state information has to be known at all transmitters. This
dramatically increases the amount of overhead as the number of parameters becomes
large; 2) System optimization is often a nonlinear problem with inter-parameter de-
pendencies; 3) The optimization process should also support a dynamic quality of
service (QoS) management scheme depending on the available network resources. In
this paper, we invoke genetic algorithms (GAs) for iteratively finding the optimum
parameters based on the acknowledgment (ACK) signal only. Neither network state
information nor channel estimation is required. The set of accurate objective func-
tions that we derive in our GA implementation control the optimization process at
the system level toward any QoS. Simulation results show that our implementation
achieves comparable performance to an exhaustive search over the whole set of pa-
rameters for which perfect network state information at the transmitter is assumed.
It also outperforms the conventional scheme for which parameters are optimized at
each layer separately.
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1 Introduction

The tremendous success of wireless and data communications is driving us
to find new enabling technologies to increase efficiency of wireless communi-
cations. The paradigm of cognitive radios was introduced by Joseph Mitola
III less than a decade ago in 1999 Mitola, III and Maguire, Jr. (1999) (see
also Mitola (2000)). Whereas most of the work so far has focused on consid-
ering the cognitive radios as a new technology for spectrum sharing, and the
cognitive radio term is sometimes used also with more limited scope to de-
note spectrum agile radios, (see for instance Buddhikot (2007) and references
therein), we consider, throughout the paper, Mitola’s cognitive radio in which
every possible parameter observable by a wireless node is taken into account
to make it adaptive and context sensitive. Cognitive radio is an ideal extension
for software-defined radio as it provides machine-learning based and efficient
automatic optimization for a fully reconfigurable wireless black box that au-
tomatically changes its transmission or reception parameters in response to
current network state and user demands.

The cognitive radios themselves are only a narrow aspect of a larger context, if
one is considering the optimization of the overall capacity and QoS. A single
radio-centric approach is not enough in the situation where cognitive and
intelligent methods are used to enhance all system aspects in the context
of wireless networks. Recently a number of authors have started to consider
the issues related to Cognitive Wireless Networks (see for example works of
Petrova et al. (2006), Nolan and Doyle (2007), Thomas et al. (2005), Thomas
et al. (2006), Petrova and Mähönen (2007a), and Mähönen (2004)).

Petrova et al. (2006) introduced a cross-layer paradigm for cognitive radios in a
form of the Cognitive Resource Manager (CRM). One of the main motivations
of CRM has been to advance the cognitive radio work towards an all-OSI-layers
approach. The concept of the Cognitive Resource Manager was introduced as
an architecture and practical implementation project towards experimenting
with networked cognitive radios (cf. earlier discussion by Petrova et al. (2006)
and later general description by Petrova and Mähönen (2007a)). The CRM
couples together several architectural blocks, such as well-defined interfaces
and a toolbox for advanced optimization methods, as shown in Fig. 1. One
should note in Fig. 1 that we consider the overlay case where cognitive radios
may operate among other non-cooperative radios. The CRM concept is, as far
as we are aware, quite novel. There is, however, a similar approach introduced
by Rieser (2004) at Virginia Tech., known as Cognitive Engine (CE). There
are some clear differences between the approaches; ours being currently more
higher-OSI-layers and cooperative-networking based. The work with CRM and
CE concepts has also progressed recently towards different implementations
(see also work done by Sutton et al. (2006) and Minden et al. (2007)).
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Fig. 1. Functional architecture of the Cognitive Radio Manager with the interfaces
to different entities.

Instead of concentrating on physical layer as many previous cognitive ra-
dio studies (see Newman et al. (2007) and Rieser (2004) for instance), CRM
strictly follows the approach of enabling cross-layer optimization with artificial-
intelligence-based learning and adaptation. The key idea behind CRM is that
it closely coordinates the interplay between cross-layer optimization function-
alities and machine-learning-based algorithms. One of the corner stones for
CRM is to follow the approach proposed by Song and Li (2005) based on
utility functions that tradeoff the fairness and efficiency of resource allocation
based on the QoS requirements of each user. Hence the application layer can
negotiate with CRM the QoS requirements, e.g., delay bounds, throughput,
depending on the available network resources and the physical resources avail-
able at the transmitter. For other relevant discussions on using a cross-layer
approach with cognitive networks the reader should note work by Baldo and
Zorzi (2007), and more generally by Johansson et al. (2006), and a review on
decomposition methods by Mung Chiang et al. (2007). Additional examples
are provided by Kawadia and Kumar (2005), who also discuss the possible
pitfalls of cross-layer optimization.

Whereas CRM and CE frameworks may dramatically enhance overall perfor-
mance when applied to point-to-point wireless links or towards full cognitive
radio networks, there are, however, several potential drawbacks and design
issues that must be overcome especially in the networked environment:

(1) Current full or partial network state information (NSI) has to be known at
each transmitter. NSI estimation requires large overhead, especially in a
time-varying environment and for large wireless networks. In fact, CRM
may decrease the overall throughput due to high overhead, unless the
design of the system takes in account the overhead of state information
exchange,

(2) Since CRM performs non-linear optimizations over large-dimension spaces,
the computational complexity may become a major burden for hardware
implementation and it is not a trivial issue to ensure that CRM can
reduce the power consumption overall,

(3) Moreover, non-linear optimization methods traditionally require numer-
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ous internal tuning parameters; For instance, genetic algorithms with
multiple objective functions require weights determination, crossover, mu-
tation, elitism rates, just to mention a few main parameters. If these pa-
rameters are not well set due, for example, to a poor NSI estimation, the
CRM approach can lead the system to an unstable state and traditional
approaches lead to better performance,

(4) Finally, CRM implies the need to develop a set of complex and efficient
decision making units that estimate NSI, and control the relevant com-
munication parameters to optimize system performance. If the decision
units are not well designed, CRM may take suboptimal decisions and in
fact deteriorate performance compared to a conventional approach.

Moreover one should note that the utility-based optimization in the networked
wireless environment is not a straightforward issue. The main problem is to
find the utility function for optimization. The simplistic approach for opti-
mizing just one parameter between two wireless devices, e.g., maximizing link
throughput or minimizing bit-error rate might have adverse effects for other
users or might effect the overall capacity of the network in unknown ways.
Even in the case of a single wireless link, there is often a combination of dif-
ferent, and competing, goals to be taken in account in order to achieve suitable
quality for communications (see also Newman et al. (2007)). The problem of
knowing NSI at the right level has been pointed out recently in different mod-
eling contexts; Petrova and Mähönen (2007b) introduced it through Value of
Perfect Information (VPI) models, and Thomas et al. (2007) independently
found a complementary description as the price of ignorance.

In this paper, we present a simple strategy for a cognitive radio system which
attempts to alleviate these potential problems. Throughout the paper, we fo-
cus, without loss of generality, on the wireless orthogonal frequency-division
multiplexing (OFDM) system with Medium Access Control (MAC) layer that
is based on the Carrier Sense Multiple Access (CSMA) with Collision Avoid-
ance (CA) protocol as for example in IEEE 802.11 (1999) standard, but our
approach can be extended to other wireless systems.

The choice of OFDM as an underlying physical layer technology is well justified
as many current and future commercial standards are based on this technology.
Furthermore, the use of OFDM enables more direct comparison of our results
with other techniques. At the MAC layer, the CSMA/CA protocol is chosen as
it is quite generic and also widely used in 802.11-based systems. However, our
approach can be extended to other MAC protocols. Specifically, we propose an
Automatic Repeat reQuest (ARQ)-based protocol for cognitive radio system
that controls the transmission QoS in terms of delay, throughput, packet loss
rate and transmission power consumption along the lines of Ying Jun Zhang
and Letaief (2006).
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This work is invoking GAs as a cross-layer optimization methodology (see Whit-
ley (1994) for a tutorial about GAs) and it can operate under our CRM frame-
work. Our approach is unique by the fact that it is using only ACK signalling
for exchanging feedback and due to this avoids many problems related to NSI
exchange. Particularly, we show that all optimal transmission parameters can
be determined through our GA implementation with the acknowledgment sig-
naling (ACK or NAK) of the prior transmitted packets as the lone external
input, and no transmission model is required for the optimization process.
Moreover, our proposed method is able at once to dynamically handle differ-
ent optimization goals in the cross-layer context that includes the Physical,
Data Link and Network Layers. This makes our approach directly suitable for
emerging cognitive radio networks, and as such our algorithm is not limited
to point-to-point link optimization between cognitive radios. This work is an-
alyzing specifically the situation where the cognitive radio link is operating
among other non-cooperative radios (see Fig. 1). The analysis of the fairness
and capacity maximization among the cooperative cognitive radios that form
cognitive wireless networks is left for further work.

The remainder of this paper is organized as follows. In Section 2, we carry out
the determination of the cognitive radio parameters and the four objectives
that we consider throughout the paper. The genetic algorithm based on these
objectives is introduced in Section 3. We then present the simulation results
and some discussion in Section 4. We close this paper with conclusions in
Section 5.

2 Cognitive radio Parameters

A primary feature of a cognitive radio is its ability to adapt to the surround-
ing environment. This feature defines a critical input to the system - a rep-
resentation of the environment. In the conventional approach with feedback
mechanism, the relevant environmental parameters of the CSMA/CA–OFDM
transmission are evaluated at the destination which feeds them back to the
transmitter. Clearly, this overhead penalizes the system throughput and re-
quires a special protocol design to support this feature.

As illustrated in Fig. 2, we propose a different approach: we develop a genetic
algorithm which utilizes the ACK signal as the only environmental parameter
from the receiver side. Since most of the communication protocols include
ACK control signaling, our approach is compatible with most standards and
does not require any further modification. Another important set of inputs
to any GA implementation are the decision variables that give the degrees of
freedom in the optimization process. For cognitive radio implementation, these
variables represent the transmission parameters that can be controlled by the
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Fig. 2. Cognitive radio principle studied in this paper: the transmitter stores the
ACK value (positive ACK or negative NAK) for each transmitted packet. Based
on theses values, our genetic algorithm described in Section 3 iteratively optimizes
the decision variables such that QoS requirements at the application layer are sat-
isfied. The decision variables are (i) at the physical layer: transmission power and
modulation order for each subcarrier; (ii) at the data link (MAC) layer: frame size,
minimum and maximum contention windows sizes; (iii) at the network layer: vari-
able transmission range and index of the associated access point. For a more detailed
description of the parameters, see Section 2.2. Once the optimal parameters have
been determined, the modulation order and the frame size are sent to the destination
via the control channel before the payload is transmitted.

system. In addition to the environmental and transmission parameters, several
objectives must also be determined to define how the cognitive radio should
operate. The objectives of the system are the road map for determining the
fate of the system. They allow the controller to steer the system to a specific
QoS state. In this study, we define four objectives that represent extremely
common wireless radio goals:

(1) Reliability based on the Packet Error Rate (PER),
(2) Power consumption (W),
(3) Throughput normalized as number of bits per symbol period and user

(bits/symbol period/user),
(4) Delay bound (s).

Whereas these objectives are very representative cases of real-life fitness func-
tions, it is worth noting that our GA-based approach can support any other
objective functions that adequately suit specific QoS requirements.
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2.1 Environment Parameters

Environmental variables inform the system of the characteristics of the sur-
rounding environment. This information is used to aide the cognitive controller
in making decisions. These variables are primarily used as inputs to GA, so
it is essential to accurately estimate them. As aforementioned, we restrict the
set of environmental parameters that are determined at the destination, to
ACK signaling. If there is no ACK signal in the protocol, our approach can
also use an estimate of the transmission packet error probability which can
be provided, for instance, at the output of the error-correcting decoder at the
physical layer. In our protocol, we assume the knowledge of the following set
of parameters at the transmitter:

(1) ACK signal (positive ACK or negative NAK),
(2) Number of occurrences that a packet transmission has been successful.

Denote τ as the ratio between this number divided by the total transmis-
sion time in term of time slot; the parameter τ can be evaluated with a
basic counter which is incremented each time a positive ACK is received.
In order to accurately evaluate τ for the current network state, we assume
that the counter is periodically reset to zero,

(3) Number of occurrences that a packet transmission has been unsuccessful.
Denote τ ′ as the ratio between this number divided by the total trans-
mission time in term of time slot. Note that τ ′ can be determined directly
from τ .

If additional information about the current network status, e.g., the propaga-
tion channel impulse response(s) or the current number of active users in the
network is available at the transmitter, the GA can employ this information
to ameliorate the optimization process of the transmission parameters.

2.2 Decision Variables

Cognitive radios become possible when the radio components permit the mod-
ification of the transmission parameters. These decision variables are set by
the cognitive component once an optimal decision has been formulated using
the GA. Defining a complete list of decision variables to generate a generic fit-
ness function usable by all radios is difficult. A goal of this paper is to define a
set of decision variables at the physical, link and network layers, large enough
to guarantee that it is a representative sample for most cognitive radios. The
transmission parameters used as outputs in our GA implementation are shown
in Table 1.
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Table 1
List of the transmission parameters in our GA implementation at the physical layer
(uncoded OFDM transmission), the link layer (CSMA/CA with exponential back-
off) and the network layer.

Network layer
Variable transmission range d

Index of the access point to be associated

Link layer

Packet size L

Minimum contention window size CWmin

Maximum backoff stage m

Physical Layer
Transmission power per subcarrier Pi, i = 1, . . . ,Nc

Modulation order per subcarrier Mi, i = 1, . . . ,Nc

2.3 Multiple Objective Functions

At the beginning of this section, we defined four objectives for our system: re-
liability, power consumption, throughput and delay bound. Next, we derive
the corresponding objective functions of our GA implementation in order to
lead the system to an optimal state 1 . In order to facilitate the selection of the
weights of the objective functions, we normalize each objective function score
to the range [0, 1]. The four objective functions in our GA implementation are
respectively:

1) Minimize Power Consumption, i.e., decrease the amount of transmission
power:

f
(PHY)

min power = 1 −
Nc
∑

i=1

Pi/NcPmax (1a)

where Nc is the number of subcarriers in our OFDM system, Pi, i = 1, . . . , Nc

is the transmission power on subcarrier i and Pmax is the maximum pos-
sible transmission power for a single subcarrier. Pi can take values within
[Pmin, Pmax] but can also be zero, i.e., no transmission on subcarrier i if the
channel fading coefficient in this band is smaller than a pre-determined thresh-
old as in Sonalkar and Shively (2000). The function fmin power is equal to 1
when no signal is transmitted over any subcarrier and equal to 0 when all
subcarriers are transmitting with maximum power Pmax. At the link layer, the
power consumption depends on the protocol. For CSMA/CA protocol with ex-
ponential backoff, the total transmission power also includes the power used

1 The reader should note that we adopt here the term objective function, although
the term utility function could also be used.
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in packet retransmission. This yields:

f
(MAC)

min power = 1 − (1 + τ ′/τ) ·
Nc
∑

i=1

Pi/NcPmax (1b)

with τ and τ ′ defined in Section 2.1. Strictly speaking, f
(MAC)

min power can be

negative for large transmission power and high retransmission rate. However,
f

(MAC)

min power is monotonically decreasing function with respect to τ and we ob-

serve in our simulations, Section 4, that using (1b) in our GA implementation
does not deteriorate the performance. Whereas (1a) or (1b) penalizes system
states with higher power consumption, it might be not enough to guaran-
tee that the current power consumption is equal to or lower than a certain
threshold P ∗. In order to ensure this, we modify (1b) as follows:

f
(MAC)

min power =











0, if
∑

i Pi > P ∗,

1, if
∑

i Pi ≤ P ∗;
(1c)

2) Maximize Throughput, i.e., increase the overall data throughput transmit-
ted by the radio. At the physical layer, the throughout per user T can be
expressed in number of bits per symbol period as T =

∑

Nc

i=1 log2(Mi)/Nc,
where Mi, i = 1, . . . , Nc is the number of bits per symbol emitted on sub-
carrier i, Mmax is the maximum modulation order with typical values 64 or
256 in wireless networks. Mi can take values from 1 to Mmax with 1 spe-
cial case occurring when subcarrier i is shut down. Mi = 1 means that the
rate log2(Mi) is equal to zero; no information is transmitted. In this par-
ticular case, the corresponding transmission power Pi is set to zero. Clearly,
we have: 0 ≤ T ≤ log2(Mmax), where the value log2(Mmax) is achieved when
all subcarriers are loaded with symbols modulated with the largest available
modulation order. Therefore, the objective function for the throughput is sim-
ply:

f
(PHY)

max throughput =
1

Nc log2(Mmax)
·

Nc
∑

i=1

log2(Mi). (2a)

The function f
(PHY)

max throughput is equal to 1 when all subcarriers transmit with

largest modulation order and equal to 0 when all subcarriers are switched off.

At the link layer, the saturation throughput T can be expressed as in Bianchi
(1998)

T =
τ · P

∑

Nc

i=1 log2(Mi)/Nc

(1 − τ − τ ′)σ + τTs + τ ′Tc

,
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where P is a packet duration and σ denotes a slot duration. We adopt for Ts

and Tc the same definitions as Bianchi (1998), i.e., Ts is the duration between
the end of a packet transmission and the reception of the corresponding ACK
signal, and Tc is the maximum delay after each packet transmission before
declaring that the packet is lost.

An upper bound on the throughput T occurs if the highest modulation order
Mmax is used for all subcarriers and if all packet transmissions are successful
which yields Tmax = (P · log2 Mmax)/Ts. Therefore, the objective function for
the CSMA/CA throughput can be expressed as the ratio between T and Tmax

f
(MAC)

max throughput =
τ · Ts ·

∑

Nc

i=1 log2(Mi)

[(1 − τ − τ ′)σ + τTs + τ ′Tc] Nc log2(Mmax)
. (2b)

Whereas (2a) or (2b) penalizes system with lower throughput, it might be not
enough to guarantee that the current throughput exceeds a certain threshold
T ∗. As for the transmission power, we therefore modify (2b) as follows:

f
(MAC)

max throughput =











0 if T < T ∗,

1 if T ≥ T ∗;
(2c)

3) Minimize Bit/Packet-Error-Rate, i.e., improve the reliability of the trans-
mission. One possible objective function for characterizing the reliability of
the system is:

fmin ber = 1 − log(0.5)/ log(P e), (3a)

where P e is the average bit-wise probability of error per subcarrier. This ob-
jective function which was initially proposed by Newman et al. (2007), has two
drawbacks in our context. First, the receiver estimates the probability of error
of the transmission and forwards a quantized version of it to the transmit-
ter. This additional overhead should be included in the protocol and requires
modification of the IEEE 802.11 standard. Second, it does not fit well with
the usual QoS requirement. QoS usually requires a maximum tolerated bit
or packet error probability. Above this threshold, the communication is dis-
rupted. In this paper, we propose two new objective functions for the reliability
of the transmission: the first function ensures that packet error probability is
equal to or lower than a target PER denoted as PER∗, i.e.,

fmin ber = log(max(PER∗, PER))/ log(PER∗). (3b)

This objective function penalizes only the sets of decision variables that yield
PER > PER∗; otherwise, fmin ber = 1 as long as PER ≤ PER∗. In other

10



words, any set which satisfies PER ≤ PER∗ would be optimal from the PER
minimization viewpoint independently if PER = PER∗ or PER =PER∗/1000.
The second objective function that we propose here is a binary version of (3b),
i.e.,

fmin ber =











0 if PER > PER∗,

1 if PER ≤ PER∗.
(3c)

As (3b), (3c) also ensures that packet error probability is equal to or lower
than PER∗. In addition, it requires at the transmitter the knowledge that
the packet has been successfully transmitted or has been lost (collision with
other users or transmission error due to the transmission channel distortion).
Therefore, (3c) can be estimated from the acknowledgment signaling value
only.

4) Minimize Transmission Delay, i.e., decreasing the time interval between two
successful packet transmissions. The objective function for characterizing the
delay bound of the system is

f
(PHY)

min delay =
L · log2(Mmax)

Lmin
∑

Nc

i=1 log2(Mi)
, (4a)

where L and Lmin are the current and minimum packet lengths, respectively.
At the link layer, packet retransmissions have to be taken into account. The
objective function becomes

f
(MAC)

min delay =
L · log2(Mmax)⌈1/τ⌉

Lmin
∑

Nc

i=1 log2(Mi)
. (4b)

2.4 A Weighted Approach

Using the four objectives (1), (2), (3) and (4) as sole inputs to the GA fit-
ness function will not suffice. In a wireless communication environment, there
are several desirable objectives that the radio system may want to achieve.
It is ambiguous to have, for example, the system maximizing the through-
put while also minimizing PER. At the physical layer, this creates a conflict
due to the single parameter, the modulation order Mi as is illustrated in
Fig. 3. The optimal set for both objective functions lies on what is known
as the Pareto optimal front, Fonseca and Fleming (1998a). This front repre-
sents the set of solutions that cannot be improved upon in any dimension.
The solutions on the Pareto front are optimal and coexist due to the tradeoffs
between the multiple objectives. In this example, the Pareto optimal front
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corresponds to the curve with maximum transmission power (−0.10 dBm).
In many optimization problems, when no global criteria for the parameters
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Fig. 3. Search direction example. Both objectives fmax throughput (2b) and
fmax ber (3b) conflict with each other for any transmission power.

exist, objectives are often combined, or aggregated, into a scalar function.
This aggregation optimization method has the advantage of providing a sin-
gle scalar solution for the fitness function in the GA. This work proposes
to use a simple weighted sum approach that has been presented by Fonseca
and Fleming (1998a) and successfully implemented by Newman et al. (2007).
The weighted sum approach attempts to maximize the sum of the positively
normalized, weighted, single objective scores of the parameter set solution
x = [P1, P2, . . . , PNc

, M1, M2, . . . , MNc
, CWmin, CWmax, L, d]:

f(x)= w1fmin power(x) + w2fmax throughput(x)

+ w3fmin ber(x) + w4fmin delay(x). (5)

This method suits the cognitive radio scenario well as shown by Newman et al.
(2007) since it provides a convenient process for applying weights to the objec-
tives. When the weighting for each objective is constant, the search direction
of the evolutionary algorithm is fixed. This is the desired property when try-
ing to find a single optimal solution for a given environment. Changing the
objective direction of the fitness function requires only a simple change of the
weighting vector. The problem is that the direction is not necessarily known
in advance for a given QoS. For example, assume that PER≈ 10−1 with cur-
rent settings and that the target PER∗ = 10−3. In order to satisfy the PER
requirement, it seems obvious to increase the weight related to (3) but the
problem is to find the incremental value. In addition, if the weight related
to the maximization of the throughput is too dominant, the QoS in term of
PER is satisfied but at the expense of the other objectives. In this example,
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Table 2
Example weighting scenarios — w1, w2, w3 and w4 are the weights for the objective
functions fmin power, fmin ber, fmax throughput and fmin delay, respectively.

QoS requirements w1 w2 w3 w4

High throughput with target PER∗ 0.1 0.1 0.8 —

Real-time with target PER∗ and throughput T∗ 0.1 0.1 0.1 0.7

the throughput will be too low or the power consumption too high. A basic
strategy would consist in updating the weights iteratively until a solution close
to the requirements is reached. However, the convergence to the optimal set
of weights may be (very) slow and the approach inefficient. The strategy that
we adopt in our GA implementation exploits the discrepancy of the solutions
in (1c), (2c) and (3c). Indeed, those objective functions may take only binary
values, 0 or 1, so whatever the weights are, the overall fitness function score
(5) is very likely low if one or several objective function scores are equal to
0. In Section 4, we validate this approach by means of simulations. Table 2
summarizes these example weight vectors for several QoS requirements.

3 Proposed Genetic Algorithm

The optimization problem (5) involves non-linear functions. Additionally, this
implies that it is not possible to treat each parameter as an independent
variable which can be solved in isolation from the other variables. There are
interactions such that the combined effects of the parameters must be con-
sidered in order to maximize or minimize the solution set. As mentioned by
Whitley (1994), a genetic algorithm is suitable to solve that kind of optimiza-
tion problem. GAs are a family of computational models inspired by evolution.
An implementation of GA begins with a population of random chromosomes.
One then evaluates these structures and allocates reproductive opportunities
in such a way that those chromosomes which represent a better solution to the
objective function are given better chances to reproduce than those chromo-
somes which are poorer solutions. We assume that the variables representing
the set of parameters {P1, P2 , . . ., PNc

, M1, M2, . . ., MNc
, CWmin, CWmax, L,

d} can be typified by bit strings. This means that the variables are quantized
in an a priori fashion and that the range of the quantization corresponds to
some power of 2.

The first step in our GA implementation is to generate a single initial random
bit string representing a possible solution x = [P1, P2, . . ., PNc

, M1, M2, . . .,
MNc

, CWmin, CWmax, L, d] to the optimization problem (5). A first payload
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packet is transmitted with respect to these parameters. After receiving in re-
turn the acknowledge signal (positive ACK or negative NAK), the string is
then evaluated and assigned the fitness value f(x) given by (5). If optimiza-
tion at the physical layer is considered, the objective functions to evaluate (5)
are (1a) or (1c), (2a) or (2c) and (3c) depending on the QoS requirements.
If cross-layer optimization is considered, then (5) is evaluated with (1b) or
(1c), (2b) or (2c) and (3c). The principle of the optimization procedure em-
ploying the genetic algorithm is depicted in Fig. 4. A new random bit string
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Fig. 4. GA Principle based on acknowledgment signaling. At the first itera-
tion, (1): generate a random string and update the transmission parameters ac-
cordingly; (2): transmit packet 1; (3): update the fitness function f based on the
received ACK; (1): generate a new random string and update the transmission pa-
rameters accordingly; (2): transmit packet 2; (3): update the fitness function f based
on the received ACK. Continue the same procedure until transmission of packet N.
Then apply GA to generate a new population (a better one). This completes the
first iteration. At the second iteration, (1): use the new string 1 to updating the
transmission parameters; (2): transmit packet N +1; (3): update the fitness function
f based on the received ACK. Repeat the procedure for each next set of N packets.

representing another possible solution to the optimization problem (5) is used
for the second packet transmission. Based on the value of the ACK signal for
this packet, this string is evaluated and assigned the fitness value f(x) given
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by (5). The population after two packet transmissions is 2. For the next packet
transmission, this process repeats. Hence, the population grows linearly with
the number of transmitted packets independently if the transmission fails or
succeeds until it reaches a maximal value N . Then, selection is applied to the
current population of N strings to create an intermediate population. Then
recombination and mutation are applied to the intermediate population to
create the next population, also of N strings. The process of going from the
current population to the next population constitutes one generation in the
execution of a genetic algorithm and is performed after each new set of N
transmitted packets. Selection process that will more closely match the ex-
pected fitness values is “remainder stochastic sampling”. There are several
ways to make this selection. An efficient implementation described by Whit-
ley (1994) uses a method known as “Stochastic Universal Sampling”. Assume
that the population is laid out in random order as in a pie graph where each
individual is assigned space on the pie graph in proportion to fitness. Next an
outer roulette wheel is placed around the pie with N equally spaced pointers.
A single spin of the roulette wheel will now simultaneously pick all N mem-
bers of the intermediate population. The resulting selection is also unbiased
as shown by Whitley (1994). After selection has been carried out the con-
struction of the intermediate population is complete and recombination can
occur. This can be viewed as creating the next population from the interme-
diate population. Elitism is considered: A percentage (10% for instance) of
the strings with best fitness function scores are duplicated in the new popu-
lation set. For generating the other strings of the new population, crossover
with single recombination point is applied to randomly paired strings with
probability pc = 0.6. After recombination, we apply a mutation operator. For
each bit in the population, mutate, i.e., flip the bit x to 1-x with probability
pm = 1−1.8−

1
N , where N is the size of the population as proposed by Fonseca

and Fleming (1998b, page 40). After the process of recombination and muta-
tion is complete for the selected N strings, the new population is re-evaluated
through the transmission of the N next packets. The process of evaluation,
selection, recombination and mutation forms one iteration in the execution of
a genetic algorithm. We iterate until convergence to a stable solution for the
set of parameters x.

4 Simulation results

In this section, we characterize the performance of the proposed Genetic Algo-
rithm for ARQ-based link adaptation for multicarrier transmission in various
scenarios. In all cases, we simulate a multicarrier system with Nc = 64 sub-
carriers using the Matlab simulator. Sufficient cyclic prefix is assumed. Each
subcarrier is assigned a random attenuation value |Hi|

2, i = 1, 2, . . . , Nc with
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chi-square distribution. Hence, the signal-to-noise ratio (SNR) varies indepen-
dently from one subcarrier to another and induces a need for the power and
rate adaptation for each individual subcarrier. The channel was assumed to
be “block-invariant”, implying that the transmission channel impulse response
remains constant or undergoes only minor changes over several consecutive
packet transmissions. We assume regular Quadrature Amplitude Modulation
(QAM) signaling (4-QAM, 16-QAM and 64-QAM) but our approach can read-
ily be extended to arbitrary modulations. We also permit switching off some
subcarriers if the fading is too deep for the corresponding bands. The transmis-
sion power Pi can take 16 values ranging uniformly from 0.1 mW to 2.56 mW.
These are example values of course and do not represent any limitation for our
GA based approach. At the link layer, adaptive contention window size is con-
sidered as suggested by Bianchi (1998). We assume no RTS/CTS mechanism.
The minimum contention window size CWmin can take four possible values
between 4 and 32. The maximal contention window size CWmax can take 8
values between 32 and 4096. The packet also has adaptive size L from 18 bytes
to 2304 bytes. Finally, at the network layer, we assume multihop transmission
with adaptive transmission range ∈ {d, d/2, d/4, d/8}. The network topology,
i.e., the positions of the nodes that are assumed to be uniformly randomly dis-
tributed over a given area, is taken into account by the Rayleigh distributed
channel coefficients. For high quality transmission channel, direct transmission
over distance d is performed. For poor channels, however, transmission has to
be done hop by hop separated from each other by distance d/2, d/4 or d/8
depending on the transmission noise level. For practical reasons, we assume
half-duplex transmission, i.e., any node cannot transmit and receive simulta-
neously. We also assume for the considered network topology the presence of
several access points within the transmission range. Our GA approach selects
the access point which provides the best QoS. Overall, with 16 possible values
for the transmission power, 4 possible modulation indexes, this gives 16 × 4
possible values for each subcarrier. With 4 (respectively 8) possible minimal
(respectively maximal) contention window sizes, 8 different packet sizes and
4 transmission ranges, and 64 subcarriers, this gives a total search space of
64 × 16 × 4 × 4 × 8 × 8 × 4 = 4, 194, 304.

4.1 Scenario 1: ARQ-based Discrete Waterfilling Algorithm

In the first example, we focus on the transmission parameters optimization for
the physical layer. Whereas next examples will demonstrate the importance of
cross-layer optimization, this example permits us to compare performance of
our ARQ-based genetic algorithm against the performance obtained with op-
timal bit-loading algorithm. Our GA is compared to the bit loading algorithm
proposed by Fischer and Huber (1996), which is near-optimal at moderate
computational complexity. It serves us as a benchmark for this example but
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also for all the other examples of this section. Additionally, we compare our
GA algorithm against the solution provided by Newman et al. (2007) which
is also based on a genetic algorithm. The main difference resides in that the
fitness function given by (5) is evaluated by using (3a) in Newman et al. (2007)
instead of (3c) in our case. Also the weights are different. The only way to
meet the QoS requirement, say target PER∗ using (3a) is to adapt the weights
of the objective functions.

Newman et al. (2007) proposed several sets of weights that advantage either
the system reliability or the power consumption or the throughput. In our
simulation, we choose their most advantageous weight set, i.e, the set that
satisfies the QoS constraint while providing the highest throughput. The final
comparison in this example is carried out with the adaptive modulation scheme
used in IEEE 802.11 standard. In this scheme, the modulation order is identical
for all subcarriers. The highest order is chosen such that it satisfies the average
target PER∗. Fig. 5 shows the throughput performance achieved by the four
considered algorithms as a function of SNR. In this example, target PER∗ is
equal to 10−3.

Three conclusions may be made. First, GA performs very close to the optimal
bit-loading algorithm as long as the number of iterations in GA is large enough.
The gap between GA with 100 iterations and bit-loading algorithm is approx-
imatively 8 decibels at all SNR values. The gap is reduced to 1.5 decibels if
GA performs 500 iterations. This loss is mainly due to the high percentage
rate for the elitism in GA. Whereas elitism of 10% dramatically increases the
convergence speed of GA, it penalizes the search toward the global optimal
solution. Duplicating the best but still suboptimal solutions among the pop-
ulation in GA may prevent finding a new better solution. Second, our GA
implementation outperforms the solution in Newman et al. (2007). The loss is
mainly due to the fact that the GA implementation in Newman et al. (2007)
uses the objective function (3a) rather than (3c). Indeed, three sets of weight
were proposed: i) the multimedia mode which favors the throughput at the
expense of the power consumption and the reliability, ii) the low-power mode
which lower the power consumption and iii) the emergency mode which favors
the reliability at the expense of the throughput and power consumption. As
expected, the set corresponding to the multimedia mode (high throughput,
lower reliability) leads to a better solution than the emergency mode set (high
reliability, lower throughput) at high SNR. At low SNR, the emergency mode
set performs better than the multimedia mode set. The operational SNR range
is rather small for both sets, that is, if the SNR is smaller than 30 decibels,
the multimedia mode cannot find any solution that satisfies PER∗. On the
other hand, for SNR larger than 30 decibels, the multimedia mode provides a
solution with much better PER than PER∗ at the expense of the throughput.
Finally, the conventional approach is penalized by the fact of using the same
modulation order over all subcarriers. In this case, performance are dictated
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by the transmission error over the subcarrier(s) with the deepest fading.
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Fig. 5. Joint Power Optimization / Bit-loading Algorithm for OFDM system. Target
PER∗ = 10−3. The conventional algorithm performs adaptive rate as in the IEEE
802.11 standard; algorithm proposed by Fischer and Huber (1996) is a near opti-
mal power allocation/bit-loading algorithm with computational complexity order of
Nc log Nc; we use this algorithm as a benchmark for our GA-based algorithm; New-
man’algorithm denotes the GA-based bit-loading algorithm proposed by Newman
et al. (2007).

4.2 Scenario 2: ARQ-based Cross-Layer Optimization with Adaptive Con-

tention Window Size

Fig. 6 shows the throughput performance achieved by GA for cross-layer op-
timization. In addition to the parameters of the physical layer Pi and Mi ,
i = 1, . . . , Nc, the minimal contention window size and maximum exponential
backoff stage are also considered. Optimization over all these parameters with
respect to (5) requires finding the optimal tradeoff between conflicting enti-
ties: Maximizing the minimal contention window size reduces the number of
retransmission per packet and therefore the power consumption. However, it
does not necessarily increase the throughput as shown by Bianchi (1998) for
large network load. In this example, the target packet error rate PER∗ is set
to 10−3 and a network with 10 or 25 users is considered. We compare with
the conventional scheme with pre-determined initial contention window size
CWmin = 32 and maximum backoff stage m = 5. For the conventional scheme,
the modulation order is determined as in Scenario 1. We also compare with the
scheme referred as “PHY then MAC” which consists of separately optimizing
the parameters of the physical layer and the link layer. The parameters of
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the physical layer are optimized with the algorithm proposed by Fischer and
Huber (1996) and the parameters at the link layer are optimized through an
exhaustive search of all possibilities of CWmin and CWmax.

Two conclusions can be made. First, GA with optimal CWmin and CWmax

outperforms the conventional scheme by approximatively 20 decibels. The loss
essentially occurs at the physical layer. Indeed, the gap between both schemes
in Scenario 1 was already around 20 decibels. The fact of using a fixed con-
tention window size CWmin = 32 and maximum backoff stage m = 5 seems
to have little effect on the performance. However, in different scenarios, this
might not be the case. Second, GA also outperforms the “PHY then MAC”
approach at SNR larger than 15 decibels. Although the bit-loading algo-
rithm performs slightly better than GA at the physical layer (scenario 1),
the “PHY then MAC” approach optimizes the minimum and maximum con-
tention window sizes based on target PER∗ and not the current PER value.
Whereas the loss is negligible at lower SNR values (SNR < 15 decibels), it
becomes significant for SNR values greater than or equal to 15 decibels. In-
deed, PER is significantly smaller than PER∗ and considering PER∗ instead
of PER leads to non-optimal contention window sizes.
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Fig. 6. Cross-Layer Optimization for OFDM-based CSMA/CA system: Joint Power
Optimization / Bit-loading Algorithm / Minimum Contention Window Size / Max-
imum Backoff Stage. Target PER∗ = 10−3.
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single hop path

2 hop path

4 hop path

Gateway

Transmitter

Fig. 7. System model for Scenario 3: Variable range routing for multihop trans-
mission in a wireless mesh network. A transmitter transmits data to the gateway
node via multihop transmission. There are several possible paths. Dotted line: di-
rect transmission; solid line: 2-hop transmission; dashed line: minimum transmission
range.

4.3 Scenario 3: ARQ-based Cross-Layer Optimization for Multihop Trans-

mission with Variable Range Routing

In addition to the transmission parameters at the physical and link layers,
we consider the transmission range d as a parameter at the network layer for
multi-hop transmission. The tradeoff for d is illustrated in Fig. 7. In order
to minimize the number of one-hop transmissions and therefore increase the
throughput, it is better to use large values for a transmission range d. On the
other hand, choosing smaller values of d improves the reliability of a single
hop link which can support a higher data rate, but more intermediate nodes
have to forward the packet until the destination is reached. Therefore, the
optimal transmission range highly depends of the current network state. The
results are shown in Fig. 8. The weights for the GA objectives functions are
those in the first row of Table 2. In all simulations, we invoke GA to optimize
the parameters at the physical layer, the link layer and the network layer, i.e.,
all parameters listed in Section 2.2 except the access point indices that are
supposed, here, to be pre-determined. At low SNR, higher throughput can be
achieved with smaller transmission ranges. Despite the fact that the through-
put decreases linearly with the number of hops, this solution is preferable since
the SNR for each single-hop transmission is much higher as plotted on the top
x-axis. We ran simulations for all possible transmission ranges. This provides
us with a benchmark for our GA implementation with variable transmission
range. For low and high SNR, performance of GA with variable transmission
range matches with the optimal solution. For medium SNR, say SNR= 15
decibels in Fig. 8, GA performs suboptimally. Indeed, most of the popula-
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tion that is satisfying the target PER∗ corresponds to multihop transmission
with at least two hops, at the early stages. This means that there are a very
few chromosomes (or maybe even none) in this population with maximum
transmission range that satisfy PER<PER∗. Even if there are a few, these el-
ements are likely to vanish within the next iterations and the optimal solution
(with transmission range d = 1) can be recovered only through a mutation
operation.
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Fig. 8. Cross-Layer Optimization for OFDM-based CSMA/CA system with mul-
tihop transmission: Joint Power Optimization / Bit-loading Algorithm / Mini-
mum Contention Window Size / Maximum Backoff Stage / Variable Range. Target
PER∗ = 10−3. System load = 10.

4.4 Scenario 4: ARQ-based Cross-Layer Optimization for Frequency-Agile

Multi-Channel Transmission

Along the lines of Dong Zheng and Junshan Zhang (2006), we take a cross-
layer approach to study a frequency-agile medium-access control design for
wireless networks. Particularly, we consider three opportunistic multi-channel
MAC protocols (OMC-MAC) for single hop transmission (we assume here
that the transmission cannot occur via multihop), which in fact make use of
the channel conditions across multiple frequency channels to boost the system
throughput and its reliability. We assume that the transmitter is within the
transmission range of several APs. The OMC-MAC protocol has to determine
an AP such that the transmitter can communicate at a high transmission rate.
In contrast with more sophisticated schemes that take into account the inter-
ference due to the channel overlapping as in Ramachandran et al. (2006), we
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Fig. 9. System model in Scenario 4: A newcoming terminal station seeks to estab-
lish connection with one of the access points AP1, AP2 and AP3 that are within
its transmission range. Each transmission link from TS to APi, i ∈ {1, 2, 3} is mod-
eled as having additive white Gaussian noise with flat fading coefficient ai. In this
example, the current load is 4 for AP1, 3 for AP2 and 5 for AP3.

assume that APs use orthogonal channels without interfering each other. In
IEEE 802.11g standards, two or four orthogonal channels within the same area
are realistic numbers. For instance, there is no overlap between channels 1, 5,
9 and 13 in realistic scenarios as shown by Dunat et al. (2004) and Fuxjager
et al. (2007). We also simulated the case of 8 APs in order to gauge the perfor-
mance from a cognitive radio perspective as it might occur in the IEEE 802.22
standard (see Cordeiro et al. (2005), for instance). The physical transmission
channel between AP and the transmitter of interest is modeled with a sin-
gle attenuation Rayleigh-distributed coefficient that is constant over a packet
duration but varying randomly from one packet to the next. Moreover, atten-
uation coefficients are supposed to be uncorrelated between all channels. The
first OMC-MAC protocol referred to as “max SNR”, uses the ACK signaling
to measure the propagation channel condition for rate and power adaptation.
By selecting the channel with the best current signal-to-noise ratio, the trans-
mitter can send packets at higher rates. We also evaluate the performance
of an alternative protocol denoted “min load”. This protocol selects the AP
with the smallest number of active users and therefore minimizes collisions
between packets. Both protocols may be combined into a third protocol such
that the AP with the best overall throughput is chosen. This offers an inter-
esting tradeoff between the current number of active users of each AP and the
current channel realizations as depicted in Fig. 9.

For all three protocols, we invoke GA to optimize the parameters at the phys-
ical layer and the link layer. Moreover, selection of the best AP in the third
protocol is done by GA as well. Performance results are compared against the
results obtained with the basic protocol which consists in randomly select-
ing an AP independently of its channel conditions. The results are shown in
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Fig. 10. We assume that (16 × the number of APs) users are uniformly dis-
tributed among the APs. This means that the current number of users among
APs may significantly vary around the average value 16. The weights for the
GA objective functions are those in the first row in Table 2. At low SNR, the
best strategy consists in selecting the AP with the best transmission SNR.
Although the potential high load of the chosen AP may significantly reduce
the throughput, the selection based on best SNR is the only strategy which
efficiently mitigates deep channel fading. As shown by Dong Zheng and Jun-
shan Zhang (2006), the average throughput gain grows logarithmically with
respect to the number of reachable APs. However, the simulated throughput
gains are smaller than the theoretical gains. This is mainly due to the fact
that in both the random access and the “best SNR” protocols, the minimum
contention window size CWmin and the maximum backoff stage m are op-
timized (through GA). This optimization enhances the performance of both
protocols equivalently and therefore reduces their overall performance gap. At
high SNR, the protocol “min load” outperforms the max SNR-based strategy.
Indeed, almost all transmitter-AP links have large SNRs to guarantee reliable
transmission with the highest modulation order, 64 in our case. The through-
put is then maximized for the AP with the smallest number of active users.
At high SNR, GA-based “max throughput” protocol performance is slightly
worse than that of the “min load” protocol. This behavior can be explained as
follows. At high SNR (30 decibels), we use the same weights as in the low SNR
regime (first row in Table 2). In that case, weight w3 related to the through-
put maximization is too low with respect to weight w2 which is related to
the transmission reliability. In this case, a significant proportion of the initial
population of GA has some large fitness function values for “max SNR” while
some other elements have some low values for “min load”. Therefore, it may
occur that solutions corresponding to higher throughput just vanish from the
population through the iterations and GA performs suboptimally. However,
whereas the “max throughput” protocol performs slightly worse than “min
load” at high SNR, it outperforms the “max SNR” protocol. A detailed anal-
ysis on the average throughput gain can be found in de Baynast et al. (2007).

4.5 Scenario 5: ARQ-based Cross-Layer Optimization with QoS requirements

In the four previous scenarios, we use GA to maximize the throughput at
given transmission power consumption and target PER∗. In this section, we
propose to evaluate GA performance with other QoS requirements. We start
with transmission power consumption. Whereas we display GA performance
after convergence in the previous scenarios, it might also be interesting to
check the tracking properties of our GA implementation.
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Fig. 10. Comparison between the three protocols for association for the frequen-
cy-agile multi-channel system described in Section 4.4: “max SNR” selects the ac-
cess point with best SNR, “min load” selects the access point with the lowest load
and the third GA-based protocol “max throughput” selects the access point which
maximizes the throughput. For all three protocols, cross-Layer optimization is per-
formed through GA and includes as parameters: power optimization, bit-loading,
minimum Contention window size, maximum backoff stage. Target PER∗ = 10−2

and the average system load per access point is equal to 16.

Case 1: Power consumption. Let us consider the following scenario: for the
first 3000 time slots (0.15 seconds), full power is used (2.50mW), then the
transmitter detects that the batteries are half-empty and the power controller
lowers the power consumption to 1mW. After 6000 time slots (0.30 seconds),
the system is asked to switch to the minimum power consumption 0.15mW.
In order to satisfy the power consumption requirements, we use the objective
function (1c) instead of (1b). In this case, the values of the weights are given in
first row in Table 2 and the results are plotted in Fig. 11. The light gray curve
shows the transmission power. As we can see, as soon as the power constraint
changes, the optimal solution of our GA implementation satisfies the power
constraints within a few time slot periods. Moreover, the throughput (black
curve) is maximized in tens or hundreds of time slots. For a very low power
constraint, say, 0.15mW, GA struggles to maximize the throughput and needs
more than 1000 iterations to reach optimal throughput.

Case 2: Delay bound for data streaming (video or audio). Another important
parameter in wireless networks is the transmission latency which is crucial
for real-time audio and video streaming applications. In Fig. 12, we display
the delay bound as a function of the number of active users such that all
their transmissions experience a delay less than or equal to this delay bound.
Target PER∗ is 2% and the target throughput T∗ is set to 640Kbps, 1.28Mbps
or 2.56Mbps. The weights for GA are those in the second row of Table 2. Our
GA implementation almost matches performance of the “PHY then MAC”
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Fig. 11. Power adaptation in OFDM-based CSMA/CA system with decreasing
power constraints: Start with full power utilization (Target POWER = 2.50 mW)
for the first 3000 time slots, then switch to 1 mW mode for the next 3K time slots,
then lower power (0.15 mW). Target PER∗ = 10−3. Network load = 10.

approach. Basically, it means that GA selected the smallest packet sizes such
that the throughput is greater or equal to T ∗. Moreover, the delay bound with
GA is twice as small as the delay bound for the conventional scheme. For large
load, the delay reduction is even more important.
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Fig. 12. Maximum number of active users in the network with respect to the delay
bound. Target packet error rate of 2% in OFDM-based CSMA/CA system for high
data rate streaming transmission (video).
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5 Conclusion

We have addressed cross-layer optimization for wireless multicarrier systems
in the context of cognitive radios and cognitive radio networks. Optimization
involves search over large discrete spaces. Traditionally, this optimization re-
quires full or partial network state information at the transmitter. In this work,
we invoked a genetic algorithm to perform this optimization. We showed that
the optimal transmission parameters can be iteratively determined with the
acknowledgment signaling of the prior transmitted packets as the lone external
input. No other network state information is required, and the fact that we
are able to piggyback the information over ACK signaling makes the solution
attractive as no separate signaling channel is required. Moreover, the opti-
mization process does not require any transmission model. Simulations with a
large variety of QoS requirements validated our approach. Simulation results
showed that our ACK signal-based GA implementation achieves comparable
performance to an exhaustive search over the whole set of parameters which
requires perfect network state information at the transmitter.

The results show that GA-based cognitive methods can provide true benefits
in the context of wireless communication networks. Future work requires more
extensive studies with large-scale networks. In that domain we are currently
experimenting not only with simulations, but also by using gnuRadio-based
testbeds. One of the main benefits of our method is that it can concurrently
and dynamically handle optimization towards different goals, and it does not
require complex exchange of network state information. As future research,
we are also considering issues of overall network capacity constraints and un-
derstanding the limits of VPI.
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